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Abstract

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type
and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra
is a Lie algebra in which there exists a special affine structure (connection with zero curvature and
torsion) defined by the Novikov algebra. For ensuring the consequences for the group structure,
we need consider the more intrinsic connections defined by Novikov algebra structures, that is, the
connections which are adapted to the automorphism structure of a Lie group. The resultant Novikov
algebra is called a derivation algebra which satisfies every left multiplication operator is a derivation
of its sub-adjacent Lie algebra. In this paper, we commence a study of the Novikov derivation
algebras and as a consequence, we can construct Novikov algebras on some 2-solvable Lie algebras.
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1. Introduction

Poisson brackets of hydrodynamic type were introduced and studied in Refs.[1–4]

{ui(x), uj (y)} = gij(u(x))δ′(x − y) +
N∑
k=1

ukxb
ij
k (u(x))δ(x − y). (1.1)
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The simplest local Lie algebra arising from brackets of hydrodynamic type(1.1)was also
introduced as follows[3]:

gij =
n∑

k=1

C
ij
k u

k + g
ij
0, b

ij
k = const., g

ij
0 = const., (1.2)

[p, q]k(z) = b
ij
k (pi(z)q

′
j (z) − qi(z)p

′
j (z)), b

ij
k + b

ji
k = C

ij
k = ∂gij

∂uk
. (1.3)

From the Jacobi identity, the tensorbij
k by Eq. (1.3)defines a local translationally invariant

Lie algebra of first order if and only if{bji
k } is the set of structure constants of a new

finite-dimensional algebraA with a bilinear product(x, y) → xy satisfying

eiej =
n∑

k=1

b
ji
k ek, (1.4)

(x, y, z) = (y, x, z), (1.5)

(xy)z = (xz)y (1.6)

for anyx, y, z ∈ A. Here{e1, e2, . . . , en} is a basis ofA and(x, y, z) = (xy)z − x(yz).
(Note that we use the left-symmetry here, where the right-symmetry was used in Refs.
[1–4].)

The algebraA satisfyingEqs. (1.5) and (1.6)is called a “Novikov algebra” by Osborn et al.
[5–10]. It also has a close connection to some Hamiltonian operators in the formal variational
calculus[11–14]and some non-linear partial differential equations, such as KdV equations
[1,11,12]. On the other hand, Novikov algebras are a special class of left-symmetric algebras
which only satisfyEq. (1.5). Left-symmetric algebras are non-associative algebras arising
from the study of affine manifolds, affine structures and convex homogeneous cones[15–18].
In fact, letG be a Lie group with a left-invariant affine structure, then this structure induces
a flat torsion free left-invariant affine connection∇ onG, that is, a connection in the tangent
bundleT (G) = G with zero torsion and zero curvature

∇xy − ∇yx − [x, y] = 0 (zero torsion), (1.7)

∇x∇yz − ∇y∇xz − ∇[x,y]z = 0 (zero curvature), (1.8)

wherex, y, z ∈ G are arbitrary left-invariant vector fields. Then the bilinear product on the
Lie algebraG of G by xy = ∇xy is a left-symmetric algebra. Such a connection was also
discussed in Ref.[1].

The commutator of a Novikov algebra (or a left-symmetric algebra)A

[x, y] = xy − yx, (1.9)

defines a sub-adjacent Lie algebraG = G(A). LetLx,Rx denote the left and right multipli-
cations, respectively, i.e.,Lx(y) = xy, Rx(y) = yx ∀x, y ∈ A. Then for a Novikov algebra,
the left multiplication operators form a Lie algebra and the right multiplication operators
are commutative. If everyRx is nilpotent, thenA is called right-nilpotent or transitive. The
transitivity corresponds to the completeness of the affine connections[15,16].
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The study of Novikov algebras is obviously difficult due to the non-associativity. Although
for the finite-dimensional Novikov algebras, there has been some progress[4,19–21], there
are still many open questions. In particular, only the classification of Novikov algebras in
low dimensions is known and there are very little detailed examples in higher dimensions.
Such a situation seriously hinders the further development of Novikov algebras. One of the
ways to find more examples is to find some special Novikov algebras, that is, some Novikov
algebras satisfying certain additional conditions.

On the other hand, Novikov algebras have the close relations with geometry, in particular,
it is quite important to use the theory of Lie groups. However, the relationship between the
Novikov algebras and their sub-adjacent Lie algebras cannot ensure any consequences for
the group structure. To solve this problem, we need to consider the more intrinsic connections
defined by Novikov algebra structures, that is, the connections which are adapted to the
automorphism structure of a Lie group. The study of such a structure was begun in Ref.
[22] for a general left-symmetric algebra. Just like in the introduction in Ref.[22], this
can be considered as a first approach to the problem of finding the Lie groups which
admit complete, locally flat (zero curvature and torsion), left-invariant connections. The
structure is given as follows: letG be a Lie group with Lie algebraG, and Aut(G) is
the group of automorphisms of Lie algebraG. The local automorphism structure ofG
is the principal fiber bundle of frames ofG obtained by the extension to Aut(G) of a
left-invariant parallelism ofG. Its fibers are unique to a right translation inG’s frame
bundleR(G).

In this paper, we commence a study of the Novikov algebra structures adapted to the
structures defined above and as a consequence we can see that most of left-symmetric
algebras obtained in Ref.[22] are Novikov algebras. This paper is organized as follows.
In Section 2, we discuss the algebraic properties of Novikov algebra structures adapted
to the automorphism structure of a Lie group. InSection 3, we give the classification
of these structures in low dimensions. InSection 4, we obtain some examples in higher
dimensions. InSection 5, we give some conclusions based on the discussion in the previous
sections.

2. Novikov derivation algebras

From the discussion in Ref.[22], we can know that a left-invariant connection∇ onG is
adapted to the automorphism structure ofG if and only if the linear mappingθ : G→ H(G)
defined byθ(x) = ∇x takes values in the algebra Der(G), where Der(G) is the Lie algebra
of the derivations of the Lie algebraG. Hence, we call a Novikov algebraA is a derivation
algebra if its left multiplicationsLx or its right multiplicationsRx are derivations of Lie
algebraG(A). Therefore the Lie groupG possesses a left-invariant locally flat connection
defined by a Novikov algebra which is adapted to the structure of its automorphisms if and
only if the Lie algebraG is sub-adjacent to a Novikov derivation algebra. Furthermore, we
have the following claim.

Claim. Let A be a Novikov algebra. ThenA is a derivation algebra if and only if the left
multiplication operators are commutative.
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In fact, for anyx, y, z ∈ A, we have

Lx([y, z]) = [Lx(y), z] + [y, Lx(z)] ⇔ x(yz − zy)

= xy(z) − z(xy) + y(xz) − (xz)y ⇔ x(yz) − (xy)z − y(xz)

= x(zy) − (xz)y − z(xy) ⇔ (yx)z = (zx)y ⇔ Lyx = RxRy.

Hence we can obtain

[Lx,Ly ] = L[x,y] = Lxy − Lyx = RyRx − RxRy = 0.

Corollary 2.1. A Novikov algebra is a derivation algebra if and only if for any x in the
derived Lie ideal [G(A),G(A)], we have Lx = 0.

Obviously, all commutative Novikov algebras (they are associative and commutative) are
derivation algebras. So we mainly study the non-commutative finite-dimensional Novikov
derivation algebras in this paper. In fact, we have the following structure theorem[22]. Let
A be a finite-dimensional Novikov derivation algebra. ThenA has a unique decomposition
as a direct sum of two ideals

A = A0 ⊕ A1, (2.1)

whereA0 is a transitive Novikov algebra andA1 is an algebra with an identity, and

A0 ⊃ N(A) ⊃ [G(A),G(A)], A1 ⊂ C(A). (2.2)

HereN(A) = {x ∈ A|Lx = 0}, C(A) = {x ∈ A|Lx = Rx} = {x ∈ G(A)|[x, y] = 0∀y ∈
G(A)}. It is easy to see that bothN(A) andC(A) are ideals ofA andC(A) is the center of
Lie algebraG(A).

Corollary 2.2. LetA be a non-commutative Novikov derivation algebra. If the centerC(A)
of its sub-adjacent Lie algebra is zero or C(A) ⊂ [G(A),G(A)], then A is transitive. In
particular, the Novikov derivation algebras on Heisenberg Lie algebras must be transitive.

3. The classification of Novikov derivation algebras in low dimensions

In Refs. [19,21], we have obtained the classification of Novikov algebras in dimen-
sion≤ 3 and the transitive Novikov algebras on four-dimensional nilpotent Lie algebras.
ThroughCorollary 2.1, we can obtain the following classification results (over the complex
number field). Recall that the (form) characteristic matrix of a Novikov algebra is defined
as

A =




∑n
k=1 c

k
11ek · · · ∑n

k=1 c
k
1nek

...
. . .

...∑n
k=1 c

k
n1ek · · · ∑n

k=1 c
k
nnek


 , (3.1)

where{ei} is a basis ofA andeiej = ∑n
k=1 c

k
ijek.
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Two-dimensional Novikov derivation algebras:

Commutative :

(
0 0

0 0

)
,

(
e2 0

0 0

)
,

(
e1 0

0 e2

)
,

(
0 0

0 e2

)
,

(
0 e1

e1 e2

)
,

Non-commutative :

(
0 0

−e1 0

)
.

Three-dimensional Novikov derivation algebras:

Commutative :




0 0 0

0 0 0

0 0 0


 ,




0 0 0

0 0 0

0 0 e1


 ,




0 0 0

0 e1 0

0 0 e1


 ,




0 0 0

0 0 e1

0 e1 e2


 ,




0 0 0

0 e2 0

0 0 e3


 ,




0 0 e1

0 e2 0

e1 0 e3


 ,




0 0 0

0 0 0

0 0 e3


 ,




0 0 e1

0 0 0

e1 0 e3


 ,




0 0 e1

0 0 e2

e1 e2 e3


 ,



e2 0 0

0 0 0

0 0 e3


 ,



e2 0 e1

0 0 e2

e1 e2 e3


 ,

Non-commutative :




0 0 0

0 0 e1

0 −e1 0


 ,




0 0 0

0 e1 e1

0 −e1 le1


 ,




0 0 0

0 0 e1

0 le1 e2


 , l �= 1,




0 0 0

0 0 0

0 e1 e2


 ,




0 0 0

0 0 0

0 e2 0


 ,




0 0 0

0 0 0

0 e2 e1


 ,




0 0 0

0 0 0

e1 e1 + e2 0


 ,




0 0 0

0 0 0

e1 le2 0


 , |l| ≤ 1, l �= 0,




0 0 0

−e1 0 0

0 0 e3


 .
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Four-dimensional transitive Novikov derivation algebras on nilpotent Lie algebras:

Commutative :




0 0 0 0

0 e1 0 0

0 0 e1 0

0 0 0 e1


 ,




0 0 0 0

0 0 0 e1

0 0 e1 0

0 e1 0 e2


 ,




0 0 0 0

0 0 0 e1

0 0 e1 e2

0 e1 e2 e3


 ,




0 0 0 0

0 0 0 0

0 0 e1 e2

0 0 e2 −e1


 ,




0 0 0 0

0 0 0 0

0 0 e1 0

0 0 0 e1


 ,




0 0 0 0

0 0 0 0

0 0 e1 0

0 0 0 e2


 ,




0 0 0 0

0 0 0 0

0 0 e1 e2

0 0 e2 0


 ,




0 0 0 0

0 0 0 0

0 0 0 e1

0 0 e1 e3


 ,




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 e1


 ,




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 ,

Non-commutative :


0 0 0 0

0 e1 e1 0

0 −e1 0 e1

0 0 e1 0


 ,




0 0 0 0

0 0 e1 0

0 −e1 0 e1

0 0 e1 0


 ,




0 0 0 0

0 e1 e1 0

0 −e1 te1 0

0 0 0 e1


 ,




0 0 0 0

0 e1 e1 0

0 0 te1 0

0 0 0 −e1


 , t ≥ 0,




0 0 0 0

0 0 0 e1

0 0 e1 0

0 0 0 e2


 ,




0 0 0 0

0 0 0 e1

0 0 0 0

0 0 e1 e2


 ,
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

0 0 0 0

0 0 0 te1

0 0 e1 0

0 e1 0 e2


 , t �= 1,




0 0 0 0

0 0 0 te1

0 0 0 e1

0 e1 0 e2


 ,




0 0 0 0

0 0 0 e1

0 0 e1 e2

0 e1 e1 + e2 e3


 ,




0 0 0 0

0 0 0 0

0 0 0 e2

0 0 −e2 0


 ,




0 0 0 0

0 0 0 0

0 0 e1 e1

0 0 −e1 0


 ,




0 0 0 0

0 0 0 0

0 0 e1 e2

0 0 −e2 0


 ,




0 0 0 0

0 0 0 0

0 0 e1 e2

0 0 −e2 e1


 ,




0 0 0 0

0 0 0 0

0 0 e1 te1

0 0 −te1 e1


 , t > 0,




0 0 0 0

0 0 0 0

0 0 0 0

0 0 e1 e3


 ,




0 0 0 0

0 0 0 0

0 0 0 e1

0 0 e2 e3


 ,




0 0 0 0

0 0 0 0

0 0 0 e1

0 0 te1 e3


 , t �= 1,




0 0 0 0

0 0 0 0

0 0 e1 (1 + t)e2

0 0 (1 − t)e2 −e1


 , t > 0,




0 0 0 0

0 0 0 0

0 0 e1 e1 + te2

0 0 −e1 − te2 e2


 ,




0 0 0 0

0 0 0 0

0 0 e1 e1 + e2

0 0 −e1 + e2 0


 ,




0 0 0 0

0 0 0 0

0 0 e1 (1 + t)e2

0 0 (1 − t)e2 0


 , t > 0,




0 0 0 0

0 0 0 0

0 0 0 0

0 e1 e2 e3


 ,




0 0 0 0

0 0 0 0

0 0 0 e1

0 e1 e2 e3


 .

4. Some Novikov derivation algebras in higher dimensions

It is quite interesting to see that most of left-symmetric derivation algebras given in Ref.
[22] are Novikov algebras. Thus, in this section, we can obtain some Novikov derivation al-
gebras in higher dimensions. For self-contained, we give these examples (Examples 4.1–4.5)
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a brief description. First of all, we give some examples of Novikov derivation algebras in
dimension 5.

Example 4.1. There are two important Novikov derivation algebras in dimension 5 given
in Ref. [22] with the following characteristic matrices, respectively:



0 0 0 0 0

0 0 0 0 0

−e1 −e2 0 e1 e1

−e1 −e1 e1 − e2
1
2(e1 + e2)

1
2(e1 + e2)

−e1 −e1 e1 − e2
1
2(e1 + e2)

1
2(e1 + e2)



,




λe3 + βe4 + µe5 e3 + λe4 + γ e5 e4 e5 0

λe4 + γ e5 e4 + δe5 e5 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



.

The sub-adjacent Lie algebra of the former is

[e1, e3] = [e1, e4] = [e1, e5] = [e2, e3] = [e2, e4] = [e2, e5] = e1,

[e1, e2] = [e4, e5] = 0, [e3, e4] = [e3, e5] = e2.

The sub-adjacent Lie algebra of the latter is (non-zero products)

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5.

Example 4.2. We can construct a series of Novikov derivation algebras in dimension≥ 5
through the extension of a five-dimensional Novikov derivation algebra. LetA be the Lie
algebra in dimension 5 with the following non-zero products:

[e1, e3] = e5, [e1, e3] = e3, [e2, e4] = e4.

A Novikov derivation product onA is obtained by taking for the left multiplications the
following endomorphisms:

Le1 = ad(e1), Le2 = ad2(e2), Le3 = Le4 = Le5 = 0,

where ad is the adjoint operator of Lie algebra, that is, ad(x)(y) = [x, y]. Consider the Lie
algebraA′ = A × Ce6 obtained fromA by imposing

[e1, e5] = e6, [ei, e6] = 0 for 1 ≤ i ≤ 6.

The Novikov derivation product onA′ is given as

L′
e1

= ad′(e1), L′
e2

= ad′2(e2), L′
e3

= L′
e4

= L′
e5

= L′
e6

= 0.

Thus, by a series of such extensions we can obtain a series of Novikov derivation algebras.
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We can see that in the above examples, the sub-adjacent Lie algebras are 2-solvable Lie
algebras, that is, the derived ideal [G(A),G(A)] is Abelian. We can see that such a situation
is not accident. In fact, we have no any example of a Lie algebra with an order of solvability
greater than 2 which is sub-adjacent to a Novikov derivation algebra. Furthermore, we have
the following example.

Example 4.3. LetA be a 2-solvable Lie algebra. SupposeA can be decomposed as a direct
sum of sub-spacesA = D(A)⊕S with [S, S] ⊂ C(A), whereD(A) = [A,A] andC(A) is
the center ofA. For every elementa inA, we denote byaD andaS the respective components
of a in D(A) andS. Then

ab = [aS, bD + 1
2bS ]

defines a Novikov derivation product onA.

Example 4.4. There exists a Novikov derivation product on any 2-solvable Lie algebra
with trivial center. In fact, from the discussion in Ref.[22], such a Lie algebraA has a
decomposition

A = D(A) ⊕ C,

whereC is an Abelian Cartan subalgebra ofA. ThenA satisfies the condition inExample
4.3since [C,C] = {0} = C(A). Thus the Novikov derivation product onA can be defined
by

LaD = 0, LaC = ad(aC),

whereaD ∈ D, aC ∈ C.

Example 4.5. In fact, there are certain kinds of 2-solvable Lie algebras with the trivial
center having the property that it is sub-adjacent to a unique Novikov derivation structure.
Such an example can be obtained from Ref.[22]. LetA be ann-dimensional Lie algebra
with the product

[ei, ej ] = 0, i, j ≥ 2, [e1, ei ] = λiei,

i ≥ 2, λi �= 0, theλi being pairwise distinct.

The (unique) Novikov derivation structure is given by

e1e1 = 0, e1ei = λiei, eiej = 0, i, j ≥ 2.

At the end of this section, we give an example of Novikov derivation algebra on a filiform
Lie algebra with Abelian commutator subalgebra. A filiform Lie algebraA in dimensionn
is a(n − 1)-step nilpotent Lie algebra, that is, the lower central series{Ak} of A (A0 = A

andAk = [Ak−1, A] for k ≥ 1) satisfyingAn−1 = 0, An−2 �= 0. The study of filiform
Lie algebra is quite important[23]. For example, the first example of the nilpotent Lie
algebra which is not sub-adjacent to a left-symmetric algebra is a filiform Lie algebra
[24].
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Example 4.6. LetA be a filiform Lie algebra with Abelian commutator subalgebra. Then
the product is given by Burde[23] (non-zero products)

[e1, ei ] = ei+1, i = 2, . . . , n − 1,

[e2, ei ] =
n∑

k=i+2

α2,k−i+3ek, i = 3, . . . , n − 2

with parametersα2,s , where 5≤ s ≤ n. Then it is easy to check that the algebra given by
the following products is a Novikov derivation algebra:

e1ei = ei+1, i = 2, . . . , n − 1, e2ei = [e2, ei ], i = 3, . . . , n − 2,

e2e2 = α2,5e4 + · · · + α2,nen−1, eiej = 0 otherwise.

5. Conclusions and discussion

From the discussion in the previous sections, we have seen the importance of the study
of Novikov derivation algebras. Moreover, we have the following conclusions:

(1) Comparing with the results in Refs.[19–21], we can see that every transitive Novikov
algebra in dimension≤ 4 on 2-step nilpotent Lie algebra (the derived ideal is in the
center of Lie algebra) is a derivation algebra.

(2) Except the type
 0 0 0

−e1 0 0
0 0 e3




which is the direct sum of the (unique) two-dimensional non-commutative transitive
Novikov algebra and the field, every non-commutative Novikov derivation algebra in
dimension≤ 3 is transitive.

(3) We would like to point out that the structure theorem given inSection 2is not the
same as the fundamental structure theory of Novikov algebras given by Zel’manov[4].
Zel’manov proved that a finite-dimensional Novikov algebraA over an algebraically
closed field with characteristic 0 contains a (unique) largest transitive idealR(A) (is
called the radical ofA) and the quotient algebraA/R(A) is a direct sum of fields.
Obviously,A0 ⊂ R(A). However,A0 does not necessarily equal toR(A), in particular,
in the case of commutative Novikov algebras. This means that every Novikov derivation
algebra is not necessarily the direct sum ofR(A) and fields. Despite this, it is interesting
to see that for the non-commutative Novikov derivation algebras in dimension≤ 3, these
two structure theorems coincide (see Conclusion (2)).
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